organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2*E*)-3-(3-Bromo-4-methoxyphenyl)-1-(4,4"-difluoro-5'-methoxy-1,1':3',1"terphenyl-4'-yl)prop-2-en-1-one

Hoong-Kun Fun,^a*‡ Tara Shahani,^a S. Samshuddin,^b B. Narayana^b and B. K. Sarojini^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and ^cDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India Correspondence e-mail: hkfun@usm.my

Received 25 November 2011; accepted 26 November 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.056; wR factor = 0.183; data-to-parameter ratio = 17.2.

In the title compound, $C_{29}H_{21}BrF_2O_3$, the dihedral angles between the central anisole ring and the pendant fluorobenzene rings are 48.86 (19) and 31.89 (18)°. The dihedral angle between the anisole ring and the 1-bromo-2-methoxybenzene ring linked *via* the enone bridge is 82.95 (17)°. In the crystal, $C-H \cdots O$ hydrogen bonds link the molecules into C(11) chains propagating along [010].

Related literature

For related structures and background to chalcones and their properties, see: Fun *et al.* (2010*a*,*b*).

Experimental

Crystal data

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{min} = 0.525, T_{max} = 0.843$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	318 parameters
$wR(F^2) = 0.183$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 1.96 \text{ e } \text{\AA}^{-3}$
5455 reflections	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

22747 measured reflections

 $R_{\rm int} = 0.032$

5455 independent reflections

4111 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$\overline{D - \mathrm{H} \cdots A}$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C29-H29B\cdots O2^{i}$	0.96	2.41	3.303 (6)	155

Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship. BN thanks the UGC for financial assistance through the SAP and BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6536).

References

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.

Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, 0582–0583.

Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, 0864–0865.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

‡ Thomson Reuters ResearcherID: A-3561-2009.

Acta Cryst. (2011). E67, o3514 [doi:10.1107/S1600536811050884]

(2*E*)-3-(3-Bromo-4-methoxyphenyl)-1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)prop-2-en-1-one

H.-K. Fun, T. Shahani, S. Samshuddin, B. Narayana and B. K. Sarojini

Comment

As part of our ongoing studies of substituted chalcone derivatives, (Fun *et al.*, 2010*a*,*b*), the title compound (I) was prepared and its crystal structure is reported. The precursor of the title compound was prepared from 4,4'-difluoro chalcone by several steps.

The title molecule is built up (Fig. 1) from four units, namely: two fluorobenzenes (C1–C6/F1) and (C13–C18/F2), a anisole (C7–C12/O1/C28) and a 1-bromo-2- methoxybenzene (C22/C27/Br1/C29/O3). The anisole moiety makes dihedral angles of 48.86 (19)°, 31.89 (18)° and 82.95 (17)° with the two fluorobenzenes and 1-bromo-2-methoxybenzene moieties respectively.

In the crystal (Fig. 2), C29—H29B···O2 hydrogen bonds link the molecules into chains along [010].

Experimental

To a mixture of 1-(4,4"-difluoro-5'-methoxy-1,1':3',1"-terphenyl-4'-yl) ethanone (0.338 g, 0.001 mol) and 3-bromo-4-methoxybenzaldehyde (0.215 g, 0.001 mol) in 30 ml e thanol, 0.5 ml of 10% sodium hydroxide solution was added and stirred at 5-10 °C for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Colourless blocks of (I) were grown from DMF by slow evaporation and the yield of the compound was 82%. *Mp*: 452 K.

Refinement

H atoms were positioned geometrically [C–H = 0.9300 or 0.9600 Å] and refined using a riding model, with $U_{iso}(H) = 1.2$ U_{eq} (C) or $1.5U_{iso}(C)$.

Figures

Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.

Fig. 2. The crystal packing of the title compound, showing chains along [010].

(2*E*)-3-(3-Bromo-4-methoxyphenyl)-1-(4,4"-difluoro-5'-methoxy-1,1':3',1"-terphenyl-4'-yl)prop-2-en-1-one

Crystal data	
C ₂₉ H ₂₁ BrF ₂ O ₃	F(000) = 1088
$M_r = 535.37$	$D_{\rm x} = 1.488 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 5893 reflections
a = 9.6902 (6) Å	$\theta = 2.3 - 26.7^{\circ}$
b = 20.3345 (12) Å	$\mu = 1.77 \text{ mm}^{-1}$
c = 12.9556 (8) Å	T = 296 K
$\beta = 110.636 (1)^{\circ}$	Block, colourless
$V = 2389.0 (3) \text{ Å}^3$	$0.42 \times 0.15 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEXII CCD diffractometer	5455 independent reflections
Radiation source: fine-focus sealed tube	4111 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.032$
ϕ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -12 \rightarrow 12$
$T_{\min} = 0.525, T_{\max} = 0.843$	$k = -26 \rightarrow 26$
22747 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.183$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.1002P)^2 + 2.471P]$ where $P = (F_o^2 + 2F_c^2)/3$
5455 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
318 parameters	$\Delta \rho_{\rm max} = 1.96 \ {\rm e} \ {\rm \AA}^{-3}$

0 restraints

 $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.78171 (4)	0.01704 (2)	0.94057 (4)	0.05838 (18)
F1	-0.8898 (3)	0.02285 (16)	0.3378 (3)	0.0829 (9)
F2	-0.0561 (4)	0.2180 (2)	1.2026 (2)	0.0959 (11)
01	0.0167 (3)	0.16491 (14)	0.5498 (2)	0.0466 (6)
02	0.1325 (3)	0.24970 (13)	0.7986 (2)	0.0544 (7)
O3	0.6494 (3)	-0.11520 (13)	0.9196 (2)	0.0549 (7)
C1	-0.5661 (4)	0.0674 (2)	0.5680 (3)	0.0491 (9)
H1A	-0.5261	0.0601	0.6436	0.059*
C2	-0.7014 (5)	0.0404 (2)	0.5087 (4)	0.0576 (10)
H2A	-0.7535	0.0160	0.5435	0.069*
C3	-0.7566 (4)	0.0505 (2)	0.3978 (4)	0.0556 (10)
C4	-0.6843 (5)	0.0873 (2)	0.3442 (3)	0.0593 (11)
H4A	-0.7248	0.0932	0.2683	0.071*
C5	-0.5502 (4)	0.1154 (2)	0.4048 (3)	0.0501 (9)
H5A	-0.5012	0.1413	0.3695	0.060*
C6	-0.4877 (4)	0.10529 (17)	0.5181 (3)	0.0377 (7)
C7	-0.3388 (4)	0.13085 (16)	0.5830 (3)	0.0359 (7)
C8	-0.2327 (4)	0.13664 (16)	0.5331 (3)	0.0374 (7)
H8A	-0.2575	0.1274	0.4585	0.045*
C9	-0.0913 (4)	0.15609 (16)	0.5949 (3)	0.0352 (7)
C10	-0.0501 (4)	0.17015 (14)	0.7068 (3)	0.0334 (6)
C11	-0.1565 (4)	0.16733 (15)	0.7562 (3)	0.0343 (7)
C12	-0.2992 (4)	0.14751 (16)	0.6934 (3)	0.0370 (7)
H12A	-0.3700	0.1454	0.7265	0.044*
C13	-0.1240 (4)	0.18309 (16)	0.8754 (3)	0.0358 (7)
C14	-0.0050 (4)	0.1557 (2)	0.9580 (3)	0.0498 (9)
H14A	0.0608	0.1290	0.9396	0.060*
C15	0.0168 (5)	0.1677 (3)	1.0683 (3)	0.0655 (13)
H15A	0.0965	0.1490	1.1238	0.079*
C16	-0.0789 (5)	0.2065 (3)	1.0936 (3)	0.0594 (11)
C17	-0.1966 (5)	0.2347 (2)	1.0165 (3)	0.0594 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H17A	-0.2609	0.2615	1.0366	0.071*
C18	-0.2189 (4)	0.2226 (2)	0.9060 (3)	0.0501 (9)
H18A	-0.2995	0.2414	0.8517	0.060*
C19	0.1073 (4)	0.19288 (17)	0.7681 (3)	0.0387 (7)
C20	0.2285 (4)	0.14534 (19)	0.7912 (3)	0.0448 (8)
H20A	0.3242	0.1617	0.8134	0.054*
C21	0.2106 (4)	0.08060 (18)	0.7826 (3)	0.0417 (8)
H21A	0.1137	0.0658	0.7531	0.050*
C22	0.3256 (4)	0.02905 (18)	0.8141 (3)	0.0409 (8)
C23	0.2855 (5)	-0.03641 (19)	0.8042 (3)	0.0484 (9)
H23A	0.1861	-0.0475	0.7752	0.058*
C24	0.3908 (4)	-0.08650 (18)	0.8367 (3)	0.0489 (9)
H24A	0.3613	-0.1303	0.8284	0.059*
C25	0.5372 (4)	-0.07106 (17)	0.8808 (3)	0.0421 (8)
C26	0.5802 (4)	-0.00506 (17)	0.8881 (3)	0.0383 (7)
C27	0.4753 (4)	0.04443 (16)	0.8566 (3)	0.0400 (7)
H27A	0.5050	0.0882	0.8638	0.048*
C28	-0.0242 (5)	0.1550 (3)	0.4338 (3)	0.0589 (11)
H28A	0.0605	0.1613	0.4128	0.088*
H28B	-0.0993	0.1861	0.3953	0.088*
H28C	-0.0611	0.1112	0.4154	0.088*
C29	0.6106 (6)	-0.1824 (2)	0.9226 (5)	0.0765 (16)
H29A	0.6980	-0.2078	0.9582	0.115*
H29B	0.5628	-0.1982	0.8487	0.115*
H29D	0.5447	-0.1866	0.9629	0.115*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Br1	0.0392 (3)	0.0565 (3)	0.0762 (3)	-0.00361 (17)	0.0164 (2)	0.00561 (19)
F1	0.0413 (15)	0.103 (2)	0.084 (2)	-0.0160 (14)	-0.0029 (13)	-0.0303 (17)
F2	0.085 (2)	0.171 (3)	0.0257 (12)	0.012 (2)	0.0129 (12)	-0.0121 (16)
O1	0.0403 (14)	0.0676 (16)	0.0333 (12)	-0.0086 (12)	0.0147 (10)	-0.0034 (11)
O2	0.0516 (16)	0.0418 (13)	0.0579 (17)	-0.0058 (12)	0.0043 (13)	-0.0058 (12)
O3	0.0495 (16)	0.0413 (13)	0.0627 (18)	0.0056 (12)	0.0056 (13)	0.0002 (12)
C1	0.045 (2)	0.062 (2)	0.0364 (18)	-0.0089 (17)	0.0105 (16)	-0.0036 (17)
C2	0.047 (2)	0.069 (2)	0.056 (2)	-0.014 (2)	0.0173 (19)	-0.010 (2)
C3	0.0277 (18)	0.067 (3)	0.061 (3)	-0.0006 (17)	0.0009 (17)	-0.019 (2)
C4	0.042 (2)	0.084 (3)	0.038 (2)	0.007 (2)	-0.0024 (17)	-0.0061 (19)
C5	0.040 (2)	0.072 (2)	0.0331 (18)	0.0042 (18)	0.0068 (15)	0.0042 (17)
C6	0.0321 (17)	0.0477 (17)	0.0295 (16)	0.0008 (14)	0.0061 (13)	-0.0046 (14)
C7	0.0331 (17)	0.0390 (15)	0.0311 (16)	0.0017 (13)	0.0059 (13)	0.0005 (12)
C8	0.0419 (19)	0.0414 (16)	0.0268 (15)	-0.0006 (14)	0.0095 (13)	-0.0013 (13)
C9	0.0356 (17)	0.0369 (15)	0.0333 (16)	0.0004 (13)	0.0124 (13)	0.0005 (12)
C10	0.0341 (17)	0.0321 (14)	0.0296 (15)	0.0013 (12)	0.0055 (13)	0.0027 (12)
C11	0.0377 (18)	0.0340 (14)	0.0264 (15)	0.0012 (13)	0.0056 (13)	0.0014 (12)
C12	0.0354 (17)	0.0430 (16)	0.0308 (16)	0.0004 (13)	0.0094 (13)	0.0000 (13)
C13	0.0360 (17)	0.0425 (16)	0.0256 (15)	-0.0026 (13)	0.0068 (13)	0.0007 (12)

C14	0.040 (2)	0.069 (2)	0.0356 (18)	0.0120 (18)	0.0085 (15)	0.0064 (17)
C15	0.048 (2)	0.107 (4)	0.031 (2)	0.016 (2)	0.0018 (17)	0.011 (2)
C16	0.056 (2)	0.095 (3)	0.0243 (17)	-0.003 (2)	0.0115 (16)	-0.0065 (19)
C17	0.057 (3)	0.081 (3)	0.040 (2)	0.014 (2)	0.0156 (18)	-0.0076 (19)
C18	0.050 (2)	0.061 (2)	0.0320 (18)	0.0145 (18)	0.0047 (15)	-0.0016 (16)
C19	0.0379 (18)	0.0423 (17)	0.0318 (16)	-0.0030 (14)	0.0070 (13)	0.0006 (13)
C20	0.0299 (17)	0.055 (2)	0.044 (2)	0.0015 (15)	0.0064 (15)	0.0005 (16)
C21	0.0341 (18)	0.0487 (18)	0.0388 (18)	0.0025 (14)	0.0085 (14)	0.0002 (15)
C22	0.0376 (19)	0.0495 (18)	0.0340 (17)	0.0020 (15)	0.0103 (14)	0.0016 (14)
C23	0.041 (2)	0.0477 (18)	0.048 (2)	0.0005 (16)	0.0061 (16)	-0.0040 (16)
C24	0.048 (2)	0.0403 (17)	0.051 (2)	-0.0066 (16)	0.0073 (17)	-0.0069 (16)
C25	0.045 (2)	0.0394 (17)	0.0386 (18)	0.0044 (14)	0.0112 (15)	-0.0018 (14)
C26	0.0398 (18)	0.0420 (16)	0.0336 (17)	-0.0008 (14)	0.0137 (14)	0.0026 (13)
C27	0.046 (2)	0.0360 (15)	0.0387 (18)	0.0007 (14)	0.0164 (15)	0.0025 (13)
C28	0.054 (2)	0.089 (3)	0.038 (2)	-0.007 (2)	0.0220 (18)	-0.008 (2)
C29	0.070 (3)	0.039 (2)	0.089 (4)	0.002 (2)	-0.011 (3)	0.001 (2)

Geometric parameters (Å, °)

Br1—C26	1.882 (4)	C13—C14	1.384 (5)
F1—C3	1.370 (5)	C14—C15	1.390 (6)
F2—C16	1.370 (4)	C14—H14A	0.9300
O1—C9	1.378 (4)	C15—C16	1.344 (6)
O1—C28	1.427 (5)	C15—H15A	0.9300
O2—C19	1.218 (4)	C16—C17	1.351 (6)
O3—C25	1.362 (4)	C17—C18	1.392 (5)
O3—C29	1.422 (5)	C17—H17A	0.9300
C1—C2	1.379 (6)	C18—H18A	0.9300
C1—C6	1.390 (5)	C19—C20	1.468 (5)
C1—H1A	0.9300	C20—C21	1.327 (5)
C2—C3	1.360 (6)	C20—H20A	0.9300
C2—H2A	0.9300	C21—C22	1.479 (5)
C3—C4	1.369 (7)	C21—H21A	0.9300
C4—C5	1.383 (6)	C22—C23	1.380 (5)
C4—H4A	0.9300	C22—C27	1.394 (5)
C5—C6	1.392 (5)	C23—C24	1.398 (5)
С5—Н5А	0.9300	С23—Н23А	0.9300
C6—C7	1.485 (5)	C24—C25	1.366 (5)
C7—C12	1.386 (5)	C24—H24A	0.9300
С7—С8	1.398 (5)	C25—C26	1.398 (5)
C8—C9	1.379 (5)	C26—C27	1.386 (5)
C8—H8A	0.9300	С27—Н27А	0.9300
C9—C10	1.391 (4)	C28—H28A	0.9600
C10—C11	1.394 (5)	C28—H28B	0.9600
C10—C19	1.522 (5)	C28—H28C	0.9600
C11—C12	1.394 (5)	С29—Н29А	0.9600
C11—C13	1.498 (4)	С29—Н29В	0.9600
C12—H12A	0.9300	C29—H29D	0.9600
C13—C18	1.380 (5)		

C9—O1—C28	117.3 (3)	C15—C16—F2	118.5 (4)
C25—O3—C29	117.3 (3)	C17—C16—F2	118.5 (4)
C2—C1—C6	122.0 (4)	C16—C17—C18	118.0 (4)
C2—C1—H1A	119.0	С16—С17—Н17А	121.0
C6—C1—H1A	119.0	С18—С17—Н17А	121.0
C3—C2—C1	118.1 (4)	C13—C18—C17	121.4 (4)
C3—C2—H2A	120.9	C13—C18—H18A	119.3
C1—C2—H2A	120.9	C17—C18—H18A	119.3
C2—C3—C4	122.5 (4)	O2—C19—C20	120.3 (3)
C2—C3—F1	118.5 (4)	O2—C19—C10	120.5 (3)
C4—C3—F1	119.0 (4)	C20-C19-C10	119.3 (3)
C3—C4—C5	119.0 (4)	C21—C20—C19	124.3 (3)
C3—C4—H4A	120.5	C21—C20—H20A	117.8
C5—C4—H4A	120.5	С19—С20—Н20А	117.8
C4—C5—C6	120.7 (4)	C20—C21—C22	128.0 (4)
С4—С5—Н5А	119.7	C20—C21—H21A	116.0
С6—С5—Н5А	119.7	C22—C21—H21A	116.0
C1—C6—C5	117.8 (3)	C23—C22—C27	118.2 (3)
C1—C6—C7	120.8 (3)	C23—C22—C21	119.9 (3)
C5—C6—C7	121.3 (3)	C27—C22—C21	121.9 (3)
C12—C7—C8	118.4 (3)	C22—C23—C24	121.6 (4)
С12—С7—С6	122.0 (3)	C22—C23—H23A	119.2
C8—C7—C6	119.6 (3)	C24—C23—H23A	119.2
C9—C8—C7	119.9 (3)	C25—C24—C23	119.9 (3)
С9—С8—Н8А	120.1	C25—C24—H24A	120.0
С7—С8—Н8А	120.1	C23—C24—H24A	120.0
O1—C9—C8	122.6 (3)	O3—C25—C24	125.4 (3)
O1—C9—C10	115.6 (3)	O3—C25—C26	115.3 (3)
C8—C9—C10	121.7 (3)	C24—C25—C26	119.3 (3)
C9—C10—C11	118.9 (3)	C27—C26—C25	120.5 (3)
C9—C10—C19	118.2 (3)	C27—C26—Br1	119.5 (3)
C11—C10—C19	122.7 (3)	C25—C26—Br1	120.0 (3)
C10-C11-C12	119.1 (3)	C26—C27—C22	120.4 (3)
C10-C11-C13	122.9 (3)	С26—С27—Н27А	119.8
C12—C11—C13	118.0 (3)	С22—С27—Н27А	119.8
C7—C12—C11	122.0 (3)	O1—C28—H28A	109.5
C7—C12—H12A	119.0	O1—C28—H28B	109.5
C11—C12—H12A	119.0	H28A—C28—H28B	109.5
C18—C13—C14	118.0 (3)	O1-C28-H28C	109.5
C18—C13—C11	120.1 (3)	H28A—C28—H28C	109.5
C14—C13—C11	121.8 (3)	H28B-C28-H28C	109.5
C13—C14—C15	120.5 (4)	O3—C29—H29A	109.5
C13—C14—H14A	119.8	O3—C29—H29B	109.5
C15—C14—H14A	119.8	H29A—C29—H29B	109.5
C16—C15—C14	119.1 (4)	O3—C29—H29D	109.5
C16—C15—H15A	120.5	H29A—C29—H29D	109.5
C14—C15—H15A	120.5	H29B—C29—H29D	109.5
C15—C16—C17	123.0 (4)		
C6—C1—C2—C3	1.4 (7)	C12—C11—C13—C14	129.0 (4)

C1—C2—C3—C4	-1.4 (7)	C18—C13—C14—C15	0.2 (6)
C1—C2—C3—F1	178.8 (4)	C11—C13—C14—C15	-175.6 (4)
C2—C3—C4—C5	-0.1 (7)	C13—C14—C15—C16	-0.3 (7)
F1—C3—C4—C5	179.7 (4)	C14—C15—C16—C17	0.1 (8)
C3—C4—C5—C6	1.5 (6)	C14—C15—C16—F2	-179.9 (5)
C2—C1—C6—C5	-0.1 (6)	C15—C16—C17—C18	0.1 (8)
C2—C1—C6—C7	-176.8 (4)	F2-C16-C17-C18	-179.8 (5)
C4—C5—C6—C1	-1.4 (6)	C14—C13—C18—C17	0.0 (6)
C4—C5—C6—C7	175.3 (4)	C11—C13—C18—C17	175.9 (4)
C1—C6—C7—C12	-32.0 (5)	C16—C17—C18—C13	-0.2 (7)
C5—C6—C7—C12	151.4 (4)	C9—C10—C19—O2	108.8 (4)
C1—C6—C7—C8	146.0 (4)	C11—C10—C19—O2	-66.6 (4)
C5—C6—C7—C8	-30.6 (5)	C9—C10—C19—C20	-71.9 (4)
C12—C7—C8—C9	2.5 (5)	C11-C10-C19-C20	112.7 (4)
C6—C7—C8—C9	-175.6 (3)	O2—C19—C20—C21	165.2 (4)
C28—O1—C9—C8	1.9 (5)	C10-C19-C20-C21	-14.2 (5)
C28—O1—C9—C10	-176.1 (3)	C19—C20—C21—C22	-173.6 (3)
C7—C8—C9—O1	-177.7 (3)	C20-C21-C22-C23	176.7 (4)
C7—C8—C9—C10	0.2 (5)	C20—C21—C22—C27	-1.7 (6)
O1—C9—C10—C11	175.0 (3)	C27—C22—C23—C24	0.7 (6)
C8—C9—C10—C11	-3.0 (5)	C21—C22—C23—C24	-177.8 (4)
O1—C9—C10—C19	-0.5 (4)	C22—C23—C24—C25	0.9 (6)
C8—C9—C10—C19	-178.5 (3)	C29—O3—C25—C24	-5.3 (6)
C9—C10—C11—C12	3.0 (4)	C29—O3—C25—C26	174.8 (4)
C19—C10—C11—C12	178.4 (3)	C23—C24—C25—O3	177.1 (4)
C9—C10—C11—C13	-178.6 (3)	C23—C24—C25—C26	-3.0 (6)
C19—C10—C11—C13	-3.2 (5)	O3—C25—C26—C27	-176.6 (3)
C8—C7—C12—C11	-2.4 (5)	C24—C25—C26—C27	3.5 (5)
C6—C7—C12—C11	175.6 (3)	O3-C25-C26-Br1	3.6 (4)
C10-C11-C12-C7	-0.4 (5)	C24—C25—C26—Br1	-176.3 (3)
C13-C11-C12-C7	-178.9 (3)	C25—C26—C27—C22	-1.9 (5)
C10-C11-C13-C18	134.8 (4)	Br1-C26-C27-C22	177.9 (3)
C12-C11-C13-C18	-46.8 (5)	C23—C22—C27—C26	-0.2 (5)
C10-C11-C13-C14	-49.4 (5)	C21—C22—C27—C26	178.3 (3)
Hydrogen-bond geometry (Å, °)			

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
C29—H29B···O2 ⁱ	0.96	2.41	3.303 (6)	155
Symmetry codes: (i) $-x+1/2$, $y-1/2$, $-z+3/2$.				

Fig. 2